A Note on Moment Inequality for Quadratic Forms

نویسنده

  • Xiaohui Chen
چکیده

Moment inequality for quadratic forms of random vectors is of particular interest in covariance matrix testing and estimation problems. In this paper, we prove a Rosenthal-type inequality, which exhibits new features and certain improvement beyond the unstructured Rosenthal inequality of quadratic forms when dimension of the vectors increases without bound. Applications to test the block diagonal structures and detect the sparsity in the high-dimensional covariance matrix are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

Analysis of a randomized approximation scheme for matrix multiplication

This note gives a simple analysis of a randomized approximation scheme for matrix multiplication proposed by [Sar06] based on a random rotation followed by uniform column sampling. The result follows from a matrix version of Bernstein’s inequality and a tail inequality for quadratic forms in subgaussian random vectors.

متن کامل

Concentration of quadratic forms under a Bernstein moment assumption

A similar concentration result is available for subgaussian random variables. It is known as the Hanson-Wright inequality and is given in Proposition 2 below. First versions of this inequality can be found in Hanson and Wright [5] and Wright [9], although with a weaker statement than Proposition 2 below since these results involve ||| (|aij |) |||2 instead of |||A|||2. Recent proofs of this con...

متن کامل

Applications of quadratic D-forms to generalized quadratic forms

In this paper, we study generalized quadratic forms over a division algebra with involution of the first kind in characteristic two. For this, we associate to every generalized quadratic from a quadratic form on its underlying vector space. It is shown that this form determines the isotropy behavior and the isometry class of generalized quadratic forms.

متن کامل

Simple Analysis of Sparse, Sign-Consistent JL

Allen-Zhu, Gelashvili, Micali, and Shavit constructed a sparse, sign-consistent Johnson Lindenstrauss distribution, and proved that this distribution yields an essentially optimal dimension for the correct choice of sparsity. However, their analysis of the upper bound on the dimension and sparsity required a complicated combinatorial graph-based argument similar to Kane and Nelson’s analysis of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014